Einleitung - kurze Einführung für eilige Leser

NATÜRLICHE GEOMETRIE

In 7 mathematischen / physikalischen Publikationen
(4 in London, je 1 in Deutschland, in USA und der ehemaligen UdSSR - alle Links dazu auf dieser Website)
zeigte ich, dass man
- Komplexe Zahlen, Vektoren, Quaternionen
- Kreise, Winkel, Euklidische Geometrie
- Koordinatensystem, Raum-Zeit, Lorentz-Transformation
- Geschwindigkeit, physikalische Bewegung, Quanten
mit neuen Augen anschauen kann, wenn liebgewordene, berühmte, historisch fixierte Vorstellungen dieser Grundbegriffe vom höheren Standpunkt der Natürlichen Geometrie betrachtet werden.

Dann ergibt sich ...
1. Ein Winkel ist ein geometrisches Grundgebilde, das 2 Scheitelpunkte besitzt.
2. Es gibt auch eine nicht-euklidische Geometrie, deren Triangel eine euklidische Winkelsumme besitzen.
3. In speziellen (mikrophysikalischen) Situationen kann man eine physikalische Bewegung und den natürlichen dreidimensionalen Raum unserer Erfahrung auch begrifflich sauber und physikalisch brauchbar beschreiben, ohne traditionelle Grundbegriffe zu benutzen wie Punkt, Gerade (Tangente), Länge, Zeit.
4. Man kann sich von Vorurteilen und hinderlichen ideologischen Fixierungen befreien, wenn man neben dem traditionellen geometrischen Modell des komplexen Zahlkörpers (Gauss-/Argand-Ebene auch das Zahl-Modell der Natürlichen Geometrie benutzt.
5. Das traditionelle Dreieck-Modell der Euklidischen Geometrie kann durch das Tetraglobe-Modell der Natürlichen Geometrie ersetzt werden - was vielleicht einer Kopernikanischen Wende gleichkommt.
6. Man erreicht einen präzisen Begriff >physikalischer Quanten, wenn man diese geometrisch-physikalischen Grundgebilde als mathematische Zahlen.
7. Man sollte die Newton-Einsteinsche Vorstellung eines physikalischen Punkt-Raumssubstituieren durch einen Raum-Begriff, dessen primäre Grundgebilde Zahlen = Quanten = Quaternionen .