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Measurement of Angles and Elementary Angle
F\rnctions Defined bv Conformal Cross Ratios

Klaus Ruthenberg

Abstract. \{easurement of angles and trigonornetric functions are de-
fined with the help of conformal cross ratios, without using anv Euclidean
structure. Connections between the 2x3 trigonometric functions are the
connections between the 2x3 permutations of a real cross ratio.

Introduction

Axiomatic foundations of conformal geometr.v, independent of Euclidean ge-

ometry, was given relatively late. In 1923 l{.Weyl was apparently unaware of the

existence of such foundations [ta]. An axiom system was published by uan der

Waerden, and Smtd [13] in the year 1935 and by Ewald [1] 1956.

This article is not based on a synthetic axiomatic system but on an invariant

theoretical concept of geometry (F.Klein, 'Erlanger Programm', l3, ]): Conformal

geometry can be characterised by the general group of conformai transformations.
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RUTHENBERG

The field C of normal complex numbers, extended by the element oo is used

to construct 2-dimensional conformal geometryl. Complex numbers are the points

of this stnrcture with oo as a 'pathological number', the possibiiity to caiculate

with this element in C is verv restricted. But the 'point' oo is equivalent to every

other point for it can be transformed by a conformal mapping into every other

point. If we, for iliustration only, want to see points z as points of a plane (Gauss,

Argand) we shouid see also these elements as points of a sphere (Riemann, cf.

i5,7]). Gauss plane and Riemann sphere are related by a conformal transformation

[5,7]. A plane and a sphere are conformally equivalent pictures of C; in conformal

geometry a plane is only a sphere in a special location.

Twodimensional Lobachevskian geometry can be seen as a conformal geometry

which possesses an invariant absolute circle (Poincard [9]) [8,7]. I see Euciidean

geometry as a conformal geometry 1vhi.h possesses an invariant absolute point.

The subgroup of general conformal transformations with a fixed absolute point is

isomorplric to Kl ein's' Hauptgruppe' l4l.

Often complex function theory defines (linear) conformal geometry by the group

of Mobius transformations nM [5,7] and proves the invariance of the cross ratio

with respect to this group. In my eyes conformal geometry is characterised by

the invariance of the magnitudes of angles. This article shou's that the invariance

of real cross ratios is sufficient for the inrariance of magnitudes of angles. The

invariance of complex cross ratios is sufficient but not necessary for this invariance.

Therefore we define conformal geometry not by nn but by a more general group

K:: N{U"M^. Elements of "W[1 are conformal reflections.

I am interested in a conformal foundation of elementary Euclidean geometry

because in this way my triangie model of quaternions [10,11] can be seen as a model

situated in a natural 3-dimensionai conformal space.

rKnown details of 2-dimensional confcrrmal geometry are coliected in H. Schwerdtfegger, Ge-
ometry of Complen I,luntbers, New York: Dover, 1g7g.
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Conformal reflection and conformal symmetry

Defini t ion 1.1.

or symmetry es

with

In,C a conformal basic transformati,on, R1

def.n,ed by th,e function

z -, z' : ayztZ * anz' * a212 * azz - 0

€ 'ndi, reflection

( 1 . 1 )

and

l o r r l  < 0 , 0 , t . 1  : a ; k

-oz t  r
Z - - 9 2 : @

A,Lt

i;f an * 0;

z : 3 p t - - - + z t : r x

zf an:0 (2 is th,e conjugate of z). The same A: anx def,nes z r- z' and z',t zt

so ue also n,ote z *. z' .

it is helpful to see t'uvo aspects of this basic transformation: 'Reflection' em-

phasises that this transformation is a mapping z *, z' , v,'ith the original z and

the image z'. If I regard this transformation as a's1'mmetry' I see the set of pairs

(r,r ') associated by the equation (1 1)

Definit ionl.2. A sequence z a z' ,-- z" *. zttt F+... r-+ ,6) of A refl"ection,s,

) € N, is a conformal transformation,R). If ), i ,s an, euen number I call

th,is transformation on, even conformal transformation. A transformation con-

structed by an odd number ), of refl.ections is an odd conformal transformation.
'W[^ is the set of all transformations R^.

Definition 1.3. An. element, of K : N[U'N4) is o konforrntransformation

or conformal transformation K. K i,s called the set of general conformal

transformations.

Definition 1.4. The set of fired poi,nts of a conform,al refi"ection (symmetrg) is

called konformkreis or conformal circle (cocircle). This set, is also called,

axis of reflection or axis of symmetry.
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with z' : z and (1.1) one gets the equation of a konformkreis

o,yzZ * apz * a21Z * a22 - 0,

also with an hermitian matrix and l-41 < 0.

Remarks

(1  2 )

1. A hermitian matrix,4 and every matrix s.,4 with s + A describe the same
reflection and the same konformkreis.

2' Because the matrix ,4 describes both the symmetry and its axis we use the
same letter A to name this matrix, its sl,mmetry and its axis.

3.  We assume l ,4 l  < 0.  I f  for  example o, t t :  o,22:I ,o, t2:  o,2r:0 wi th I -4 i  > 0
we get zZ : -1 as a cocircle equation. But complex numbers r,r,ith zZ : -I
don't exist.

2. The invariance of conformal circles and sym-
metries

If z I m" the reflection

B : z' + z : [3tz'i *bz' + bZ + 0z : 0

can be written

z, *, z : _1b2, + 7z)(Ai, + b)-r

If we substitute z of (2.2) into the konformkreis equation (1.2)

A : a 1 z Z * a z l a Z + a 2 : e

we get after sonre straightfonnard. reckoning the transformed equation

A' : ayz'i' * anz' * o,21i, I a22 - 0

(2  1 )

(2 2)

(2 3)

(2 4)
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with the matrix eiements

o11 : albb - 9r@6 * rlb) + a2p]

ar2 : b(ot1, * azg) - h1za - abz

azt : b(otp, * az\r) - gr\zd - ab2

a22: a2bb - gr(db + a,b) + o1p22.

Again we get an hermitian matriX or.l : o,k^ and it is

lo^^l : 11' : l  V: ::
) a  Q 2 '  1 b  u r i

(2 5)

Because lAl < 0 and lBl < 0 it follows with (2.6) that also lasl < 0. Equation
(2'a) has the form of a konformkreis equation, too. The reflection B maps cocircle
A into the cocircle A'. AIso if we use a sequence of reflections E) the image of y' is
a conformal circle. It is knorn'n that a conformal circle is inr,ariant under N{. We
have thus proved:

Theorem 2'1. Euery conformal transformationK e K maps a konforkreis into a
konform,lcreis.

We also say: A konformkreis is invariant under (with respect to) the general
conformal group. Not only the axis of a symmetry but also this symmetry itself is
invariant. To show this in 'N,[A I map the symmetry

A :  z , - -  z *  . .  d lz *z  *  az*  +  az- *  a2  :  Q

(2 6)

(Compare the equation (2.3) of the cocircle -a) by the reflection .B of (2.2). Because
the equation (2.7) of the symmetrv ,4 and the equation of its symmetry axis (2,3)
has the same form (we have only to substitute ,,r', by ,,r*,,), the same reckoning
which leads Lo (2.4), (2.5), (2.6) also leads to

A' ' .  z '  *- z* '  :  a1lz*t i t  * a12z"t * o21z;, * azz - A

(2.7)

i t R \

together with (2.5) and (2 6).

Theorem 2.2. Euery conformar transform,ation K g K maps a symmetry ,into a
symmetry.
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Theorem 2'1 and 2'2 say the same thing in different words because hermitian
matrix with negative determinant, konformkreis and symmetry are equivalent con-
cepts' Didacticat but aiso scientific considerations make it desirable to state this
theorem in two equivalent forms.

Hermitian matrices and symmetries (both in a more generai form) have impor-
tance in modern physics. Aiso the usefulness of the konformkreis concept should
be discussed in areas where the classical concepts of Euclidean circles, straight lines
and iengths have lost significance.

How is mir idea of conformal transformations 'N[) connected
of Mobius transformations MI defined for instance in function
[5,7J? This connection is clescribed by

with the concept

theoretical books

Theorem 2.3. Euery con,formal transformation R^ with, euen ), has
form,'

th,e 'Mcibi,us

(2.e)z r .  z '  :  (az + b)(cz + d;- t

with, compler a,b,c,d.

Also the set of these even conformal transformations constitute a group. This
group of even conformal transformations is a subgroup of the usual Mobius trans-
formations or is identical rvith this Mobius gronp. 'm{} g Nt if ) is even.

Proof. Two reflections produce a product described b5, an equation of the form
(2'9) The product of tw'o transformations (2.9) has again the form (2.9) and this
product is equivalent the product of four reflections. An even conformal transfor-
mation can be described for everv even ) by an equation of the form (2 g). The'Mobius form' of (2.9) guarantees that also even conformal transformation consti-
tute a group. It is a subgroup of IM for its elements have the form of elernents of
this group.

Odd conformal transfortnations are not elements of nM[ becapse odd conforrnal
transformation change the cross ratio (Theorem 5.2) but this cross ratio is invariant
in N,[ [5,7].
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Which suppositions secure the identity Wfl : 'Nrn) for even )? (Which even
number ) is sufficient to generate every element of N4l as element of 'MI) for even
)?) This question is interesting, but an answer is not a theme of this article. In
nM (and in 'Nr{A with even )) not only conformal circles and circle configurations
but also the orientations of a 4-circle are invariant. A transformation with odd )
changes a right orientated 4-circle into a left orientated one (Compare Theorem
5.2). Presumable books of complex analysis and function theorv (cf. [S.7]) restrict
to Mobius transformations lNdlbecause such transformations are anaivtic functions.
Odd transformations are non-anaiytic ones.

Remarks

A1l conformal circles (symmetries) can especialiy be standardized by l,4l :
-1. If we use this special standardizatjon the number -1 is invariantiy bound
with every konformkreis and its conformal basic transformation (cf.(2.6)).

The word 'axis' of symmetry remembers that the set of fixed points of a
conformal basic transformation appears as an Euclidean straight line if we
use the traditional Gauss/Argand plane to illustrate conformal figures and if
the point z : 6 is a point of this symmetrl' axis.

The words 'konformkreis' and 'conforrnal circle' remember that the set of
fixed points of a conformal basic transformation appears as an Euclidean
circle if we use the traditional Gauss plane to illustrate conformal structures
and if the point z : x is not a point of this conformal circle.

If we use the Riemann sphere of complex analysis lS,Z] to illustate conformal
structures, all conformal circles (both through and not through z : oo)
appear as Euciidean circles.

Germans use the word'kreisgeometrie'( 'circle geometry', cf. [1]) to denote
the 2-dimensional geometrv of conformal circles. Aiso in the following we
oft,en use the old Euclidean word 'circle' to shorten the word 'conformal

circle (cocircle)'. But also if we use the same word for Euclidean circles
and for conformal circles we have to pay attention to the difference of both
conceptions. For example in conformai geometry a circle generally does not

1 .

2.

3

/l
T .

a

U .

79



RUTHENBERG

possess a centre: 'radius' of a circle has only in Euciidean but not in conformal
geometry an invariant meaning.

6' Only if we restrict the general conformai group to the subgroup of such trans-
formations '*'ith an invariant point zou, (I call this point the absoiute point),
the structure of conformal circles, u'hich do not pass through the absolute
point, is identical with the structure of Euclidean circles. For instance in
relation to this invariant 2o6" a.fid, its subgroup (which is isomorphic to the
Euclidean group of similarities) one can define the centre of an Euciid.ean
circle: The centre z^of. a circle,4 is the pictrire of zo6, if we m&p 2o6" by the
reflection A.

7' If we interpret the traditional Gauss plane as an Euclidean plane the point
z : 6 is traditionally the absolute point. But it is interesting to use also
a pornt z f oo as absolute point. In this way we get a non-traditionai
model of the Euclidean structure. This non-traditional picture of Euciidean
geometry has some (at least didactical) adrantages: For example in this
representation Euclidean straight lines can be seen as (conformal) circles
through the absolute point. From tire higher conforrnal view this non-classical
model of Euclidean geometry (with zaa, * co) is equivalent to the usual
classical model (with zabs : oo). It is only an historically grown convention
to identify the 'patirological', not proper number oo of the complex field with
the 'pathological', 

not proper point zo6, of. Euclidean geometry.

I see two aspects of geometrv :

1' A transformatiofr K, element of the conforrral group K, defines the pariable
aspect of conformal geometry. The elements K bring about the connection
between different locations of conformal entities.

2' Only those parts of conformai entities have an objective (invariant. geomet-
rical) meaning which do not change if rve change the location of this entity.
With help of the axes of symmetries we can construct a set of inuari,ablecircle
entities, a set of conformai basic structures. Every such conformal structure is
dual in points and circies, possessi ng 2, points and, 2" circles (u : 0,L,2.3). In
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the following sections of this article we use 2-circles (u : I) to define confor-
mal angles. In a second paper we use 4-circles (u -2) to de6ne the conformal
form of trigonometry. I am especially interested in the conformal geome-
try of a 4-circle. This circle configuration, seen as an entity of the natural
3-dimensional conformal space, describes the conformal shape of quaternions.

And such Hamiltonian complex numbers are seen both as coordinate systems
of the 3-dimensional natural space and as elementary geometrical particles
in this physical space.

3. Conformal reflections and conformal circles in
special locations

A conformal transformation always maps a symmetry (and its axis) into a
symmetry (and its axis). Therefore, without loss of generality we can discuss
further features of these objects in choosing a 'special iocation' of such circles and
symmetries. (1.2) and (1.i) describe circles and symmetries in'general location'.
A symmetry in special location has a simpler form of its hermitian matrix. for
instance

^: (? ;) "' (l j,)
with the conformal circle z: z or zE: 1. A l itt le arithmetic proves:

(3  1 )

Theorem 3-L. Euery sym,me.try - i.n o more general locati,on - can be transform,ed,
into the special location,s (3.1) so that I.he ares are z: Z or zZ: l.

4. Two circles in symmetric position

Definition 4.1. If a reflection A transforms a set of poznts F C C into a set F'
in such a waE thatF - F', the circle A is a symmetry axis of F' ; in relation to
A the .fi.gure F ts r,n o symmetric position.

If a special location is used it is simple to prove:

8 1
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Theorem 4.L. Euery conform,al circle A possesses infin'itely many c,ircles which
are in a symmetric posi,tion. to A.

If a conformal circle A is the symmetry axis of a circle B, the conformal circle
B is also the symmetric axis of" A, both circles are in a symmetric position to each
other.

o . The cross ratio

A fiindamental invariant number of conformal geometry is the cross ratio (cf.

[5,7]) tr of four points

u) : (1234) :: 1=) + 
zz - "

Z a - 2 3  Z Z - z g

For our purposes we put together known formulae:

( c . l )

'It)1 i: (L234) : w
,ti)2 '.: (1342): (1 - tr)-l

, t1)3: :  (1423) :  (u -  1)r- t

, t ( 1  - u e )  : 1

, r ( 1  - w z ) : I

, r ( 7 - u . ' 1 )  : 1

?I){JJ2?tt3 - - 1

' u ) - r : ( 1 4 3 2 ) : u ) - l

4 t t  ^  -  1 1 D l ? \  -  1' u , _ 2 : ( I z + o l : L - u

?r'-r :  (1324) :  ( tr  -  L)- '*

, - u ( 1  - u - r )  : 1

t u - z ( I - z r - r )  : 1

, - r ( 1  -  w - ; ) :  t

(5  2)

(5 3)

(5  5 )

u -1w-2w-3  -  - 1  (5 .4 )

I call the three numbers u.'o the positiue cyclic permutations of a cross ratio; tu-o

are the n'egatiue ones. These positive and negative cyclic permutations are related

bv

L u n - l r - � o - L .  K  :  7 , 2 , 3

and

w 1 1 -  u t - 2 :  t

w 2  *  w - 3 :  t  ( 5  6 )

? r t 3 * U r - 1  : l

A stright forward calculation proves
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Theorem 5.f- If four points zp define the cross rat,io w and, i,f the points z1x ar€
refi,ected by A,

ZP r--+ 7fi ,

the cross rati,o w' of the image po'ints zlrt is the compler conjugate of w:

'u-;' : a -

A transformation .Rl with ) even maps a cross ratio tr into the cross ratio
?D' : rl' because ?r : -i for every complex numbelu.

Theorem 5.2. With,i,n the group nMi and within ,M^ with euen ) the cross rat,io
of four points is inuariant. An odd transformati,on changes such cross rat'io into
the conjugate numher w.

If four points are points of the same conformal circle A it follows for the cross
ratio of these four points, as fixed points of the reflection .4, that

'lUt : uJ.

As consequence of Theorem 5.1 it follows for the reflection A that

'n)' : f i .

so that

.*^ : W.

Theorem 5.3- Four poi,n,ts of the same konformkreis h,aue a real cross rat,io. A
real cross ratio i's in,uario,nt in the general conformal group. AIso refiections d,o n,ot,
chan,ge the real cross ratio.

The position of a point z in relation to two points a, b and a third point z1 orr
a cocircle A can be described with help of the real cross ratio of these four circle
points

b - z ' t  a - z t

with z# aand. zrb and,r"":r: mffieither tr ) 0 or, ( 0.
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Definit ion 5.1. The set of poin,ts z on,A w'ithw ) 0 is thecircle arc A1; th,e set
of points z on A with w < 0 is the circle arc At.

Theorem 5.4. Two poi,nts a,b on, a conformal circle A produce eractly two
arcs A1 and 42.

For it is either u ) 0 or u' < 0.

6. The conformal 2-circle

We want to define 'angles' without using the angle concept of Euclidean ge-
ometry. Conformal geometry cannot use this elementary Euclidean angle concept
because straight lines and therefore tangents to circles are not defined.

Definition 6.1-. Two poin,ts togeth,er with two cocircles tltrough, these points con-
stitute a 2-circle. The points are the corners, th,e circles lhe lines of the Z-circle.

The two corners of a 2-circle separate every iine into two arcs (Theorem 5.4).

Definit ion 6.2.

,4n angle in a 7-circle i,s a pair of arcs.
,4 stretched angle is an arc Ttair on the
Adjacent angles possess a com,mon, arc.
An angle pair is a pair o/ apex angles
angles.

Remarks

same li,ne.

i,f the two an,gles produce two stretched

1. For example : A 2-circle AB with the arcs Ai,Az,Bt -82 has the stretched
angies AtAz and 8182. Adjacent angles are A1B1 and. 4281. A1B2 and,
AzBt are a pair of apex angles.

2. The word 'line' of a 2-circle remembers that a conformal 2-circle is corre-
sponding to an Euclidean pair of intersecting straight lines. Generally a
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conformal angle possesses 2 arcs and 2 corners (apexes). Only if we illustrate
an angle in a Gauss plane in such a way that one corner is the point z : oo an
angle appeaxs in the traditional form, a special 'Euclidean' location. Because
in this location z : x is the absolute point, an Euclidean angle possesses
only one apex, for the second apex is only a'pathological', not a proper point
of the Euciidean plane.

Definition 6.3. If the two lin,es of a Z-crcle arein a sym,metric position to each
oth,er these circles are right-angled or orthogonal.

Definition 6.4. Two angles h,aue the sam,e magnitu de if theg can be con,formally
mapped i,nto each other.

7. The characteristic number of a 2-circle

Definition 7.1. If a czrcle M is right-an,gl,ed to both lin,es of a Z-circle AB this
ci,rcle M i,s a measuring circl e of AB .

Given a 2-circle AB in general location. One can allvays find a conformal
transformation so that the corners 21 orrd z2 of. AB get the special location (rr, ,r) -

(0,*). Here the lines of the 2-circie are described by the equations

A : a , z * a E : 0 ,  B : b z + b Z : 0

a , b  € .  C , o , l  b .

In this location

(7  1 )

( 7  2 )l v f : 2 2 + C I : 0

(rn"ith real a < 0) are measuring circles of AB , u,hich follows by reflecting A and
B at LI. Because every 2-circ]e can be given the special location (7.1) and because
symmetries are invariant with reflections we have proved

Theorem 7.t. Ertery Z-circle possesses an inf,nite number of measuring circles.

A 2-circle AB (7.1) intersects each of its measuring circies at four points

4 /s :  +J  abb- t ,  z+12 :  +Joao- t .  (7  3 )
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These four points have the cross ratio

E:-
v bb-'

a does not appear in this formula. Therefore every mea^suring circle produces the
same cross ratio. So the real number t^t' is associated with a 2-circie, independently
of the used measuring circle. And because the real t^0, is an invariant cross ratio in
the general conformal group, '-- does not depend on the 2-circle's location.

Definition 7-2- The real cross ratio ut produced hy a m.easuring circl,e M on a
Z-circle AB is th,e characteristic nurnber of th,i,s p-ci,rcle.

Equation (7.4) does not show that this characteristic number is a real number.
we look for a real parameter (s which indicates that tr, : La :
If we choose a special representation of B in (7.1) by b _ i: uEl and of M in
( 7 . 2 ) b y  a -  _ � 1 ,  w i t h  Z t l 3 :  * 1  a n d  z : :  z 4 -  - z 2 w e  h a v e

/  t  -  r \ '  (  z - t t z  -  z - 1 i 2 \ 2  / -  r n t 1 z  -  , - t 1 z \ 2w : t t + r /  : t ; 4 t r - " + w , |  : - l t ; -  -  
I  ( z s )

\ ' . . /  \ "  .  /  
' \ " r * t Z t _ ; W t

I t  is  z:  exp ( i$)  becanse zZ:1,  so that

/=-\ 2
/bb-1 \

/bu-, /

o,, _ _ (,  exp(iE12) - exp(- iOl2)\,

\ exp(igl2) f exp(- iolz) )

Ql2 *;"xP\iql3! - "'P\-tqI,?,
' exp(tql2) - exp(-iEl2)

the symbol Ql2 * tan(ql2) is usually used. so thar

( a  A \
\ ,  . ' 1 , ,

(7  6 )

with this formula the real characteristic number 'u, of the 2-circie is described bv
the reai parameter / For the function

(7 7)

(7 8)u (0 ) :  - tan2  (q lz ) .

Because the characteristic number -- is a geometrical (invariant) property of the
2-circle, also / has an invariant meaning. \\,'e get a bijective correlation between d
and tu if we restrict to

o < e < n, (7  e)
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The magnitude of an angle

Given a 2-circle AB and one of its measuring circle M. M may meet the four
arcs A* of  the 2-circ le in the foru points zn (n:  r ,2,s,4). I  mark an angle and i ts
magnitude with the same sign. And for example the angle with the arcs ,41 and
,4a with the sign /1a.

Definition 8.1. The real parameter ( accord,ing to (7.6) is the magnitud,e of the
angle Qu,, in sym,bols du:: 6.

Because this magnitude of an angle is defined with help of the conformaj cross
ratio we can deduce sone elementary angie theorems with help of this cross ratio :

L. Qv: Qu, because (1234) - (4J2I). Angles are not orientated.

2' 6tn:6u: dzs, because (1284): (J4r2): (2142). Two apex angles have
the same magnitude.

3. The magnitudes of adjacent angles possess the sum n', because adjacent angles
have inverse cross ratios w+r,rr_r. with u,q{rl_1 : !.

4. orthogonal angles possess the magnitude ,rlz ,, ( lz} ) - (2J41), ,ur+t:,t i)*,.

All angles in a right-angled 2-circle possess the same magnitud e n 12.

We get a special situation if the two corners of a 2-circle are degenerated to a
double point. In this situation this double point is a point of ihe measuring circle
too. And two of the four measuring points are identical rn ith this double point.
There are essentially two configurations which can be described by ,, : 0, d: 0
and by u)!: @, Q: r.If. rve accept also such degenerated 2-circle we have

0 { O 1 r . ( 8  1 )

9. Angle functions as permutations of cross ratio

My interpretation of the real cross ratio as the characteristic number of. a 2-
circle gives a geometrical picture of its 24 permutations.
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Section 8 gave the interpretation for the equaliti,es of permutations, for example

(1234) : (4321) : (3412) - (2143) :

An angle and its apex angle have the same magnitude; if we measure an angie and
its apex angie the order of its arcs does not matter.

What is the meaning of the 6 differend permutations trra,6 of (5.2) in section 5?
These 6 different permutations of a cross ratio can be described by the same pa-
rameter p but in different forms :

w+t : -(1;;'*1-'
)  I  - ( * ,

u+2 :  * (? )
/ -  -  - 1 - Z

u+3 : +li-;- 
)

(wi th e* : :  exp(+iQ12),"-  : :  exp(- iEl2))  so

u+t -- - tan+2 (qlZ)
u+z : cos+2(412)
u+3 : sin-2(612)

Therefore the 2 x 3 angle functions

/ -  -*  - " -  \  
-2

u_1 : -(iff i l

' t L ' - )  :  + ( " * t " - ) - '  (9 .1 )' \ z / )

/ -  r  - f  * 2

?r'-3 : +\i+)

that

u-1  :  - tan-2(E lZ)

u-2 :_ cos-2(6lZ) (9 2)
w_s : sin+2(6lz).

9 H tang

9  H  C O S P
.  - t

9  H  S l n  
- 9

1

9  H  t a n ' g
f

9  H  C O S ' P

I  H  s i n g

(e 3)

(e 4)

(with g:: Sl2) and the 2 x 3 real permutations t 'a6 (5.2) reciprocally interpret
each other. For instance the inverse relation (5.5) of 1r*6 &rrd ?l*6 c&rr be seen as
the inverse relation of the 2 x 3 angle functions. For example (5.6) takes the form

- lan2g +  cos-2g
cr-rs2g + s in2g

sin-2 g tan-2 g

- 1
- I

- I

- t

The classical equation cos2,p * sin2 g : I appears conformally fitted into a cvcle
of 3 eqrrations. Without our cross ratio definition of the six elementary angle
functions the different signs hide this symmetry.

Two formal things are interesting :
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The conformal magnitude $ of. a conformal angle comes together with the

classical magnitude of an Euclidean angle. But everywhere in our formulas

S l 2 ( n o t / ) a p p e a r s .

In each case the cross ratios define the square of an angie function.

Not only the measurement of angles and the definition of angle functions but also

a conformal form of Euclidean trigonometry can be founded on the conformal cross

ratio.

In another paper I interpret all n,on-real cross ratios as the characteristic num-

bers of conformal triangles. With help of such a triangle tang can be defined

by

1 .

2.

t , a n g : -  u l i (e 5)

(e.6)

with an i,maginary cross ratio o. here tr is the characteristic number of a conformal

triangle with the angles r12, g, n12 - p. Between the real number w: w+t of

(9.2) and the imaginary number tr I found the connection

' U  : ' U 2

u'ith g : Ql2.
This possibility to represent tan Ql2 with (9.5) as a ratio of two imaginary numbers

causes that tan rltf 2 occurs only in a quadratic form, if one restricts to real cross

ratios only.

10. Concluding Remarks

Often Minkowski's time transformation t -+ it rn'as only understood as a formal

trick to get a simpler relativistic formalism. I use imaginary units of lengths and

irnpulses in special relativity 111]. Do these non real units possess a deeper geo-

metrical and physical meaning? In the context of this question it is worthy of note
that already a pure and very elementarl' geometrical concept - the trigonometrical
function tan g - has to be seen as a ratio of two 'imaginary numbers, if a complex
number is the characteristic number of a conformal (Euclidean) triangie.
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At first the cross ratio was known as a fundamental invariant of projecti,ue ge-

ometry. Formally also the Mobius group INfl defines a 1-dimensional projective

geometry (with complex points), so the invariance of the cross ratio in C with

respect to Nll follows formally in the same way as in real l-dimensional projective

geometry. But on this way the geometrical meaning and importance of this fun-

damental invariant in 2-dimensional conformal geometry does not come into sight.

I could show a real geometrical meaning of the conformal cross ratio by starting

with my conformal basic transformations "N[], not u'ith the ususal Mobius trans-

formations nM. So the measurements of angles and the elementary angle functions

could be defined rn'ithout using Euclidean geometry. I have not found this way of

doing things and these results in the mathematical literature. We owe F. Klein the

invariant theoretical concept of a geometry [4] but I do not know another author

who uses this concept as a methodical principle to develop elementary structures

of Euclidean geometry as elements of conformal geometry. N{y interpretation of

Euclidean geometry as geometry of a conformal subgroup u'ith an inr,'ariant abso

lute point and my critical discussion of the role of the point oc are necessar)'steps

on this way. The equivalence of konformkreis and hermitian matrix was used to

construct a real projective model of 2-dimensional conformal geometry (cf. [2]). A

very important element of projective geometry is its dual structure. But in 12] I

have not found a hint in which sense 2-dimensional conformal geometrl'possesses

a duality; that basic structures of 2-dirnensional conformal geometry, 2"-circles,

are dual in points and circles. Also without success I searched (in publications as

12,6,L2)) for my equivaience of hermitian matrix and conformal symmetry, as well

as my use of this symmetry to construct the conformal group "nd).

I risk a comparison to explain a second aspect of m1' methodical innovation. Still

in historical times human beings perceived our earth as a disk. Toda,v sateliites

run round the globe. Since Euclid wrote his books. mathematics perceived 2-

dimensional Euclidean structures as elements situated in a plane. In my eyes a

konformkugel (conformal sphere) is the natural stage of 2-dimensional geometry.

If we have this view the absolute Euclidean point loses its special part. This
part can be rewritten. We can add such a point as an individual but, normal one
to classical geometrical structures. The absohite point rr,'hich has 'chained every
Euclidean structure at infinity' can be substituted by individual points if we want
to see Euclidean structures as conformal entities. In using this new view an angle
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possesses not one but two apexes; a triangle possesses not three but four corners.
With this methodical innovation old and well-known Euclidean concepts can be
seen only as conformal ones.

A conformal interpretation of Euclidean structure leads me to my triangle modei
of quaternions 110.11]. If we use not the point cc but an individual fourth point of
these quaternions, every non-real quaternion can be seen as a coordinate sysiem of
its konformkugel C;. The quaternionic i describes the position of this konformkugel
in our natural S-dimensional space. The multiplication of two quaternions At., Az
has to be seen as the interaction of two particles, elements of two conformal spheres
with the positions i1 and i2. Every conformal sphere can be seen as the stage
of a 2-dimensional Euclidean structure, but only 'individual', in relation to an
individual point oo. I compare this with the situation of coordinate systems in
special relativity.
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