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Measurement of Angles and Elementary Angle
Functions Defined by Conformal Cross Ratios

Klaus Ruthenberg

Abstract.  Measurement of angles and trigonometric functions are de-
fined with the help of conformal cross ratios, without using any Euclidean
structure. Connections between the 2x3 trigonometric functions are the
connections between the 2x3 permutations of a real cross ratio.

Introduction

Axiomatic foundations of conformal geometry, independent of Euclidean ge-
ometry, was given relatively late. In 1923 H. Weyl was apparently unaware of the
existence of such foundations [14]. An axiom system was published by van der

Waerden and Smid [13] in the year 1935 and by Ewald [1] 1956.

This article is not based on a synthetic axiomatic system but on an invariant
theoretical concept of geometry (F.Klein, ‘Erlanger Programm’, [3,4]): Conformal

geometry can be characterised by the general group of conformal transformations.

2000 Mathematics Subject Classification: Primary: 30A99; 30C35;
Secondary: 20C99.
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The field C of normal complex numbers, extended by the element oo is used
to construct 2-dimensional conformal geometry!. Complex numbers are the points
of this structure with 0o as a ‘pathological number’, the possibility to calculate
with this element in C is very restricted. But the ‘point’ oc is equivalent to every
other point for it can be transformed by a conformal mapping into every other
point. If we, for illustration only, want to see points z as points of a plane (Gauss,
Argand) we should see also these elements as points of a sphere (Riemann, cf.
[5,7]). Gauss plane and Riemann sphere are related by a conformal transformation
[5,7]. A plane and a sphere are conformally equivalent pictures of C; in conformal

geometry a plane is only a sphere in a special location.

Two-dimensional Lobachevskian geometry can be seen as a conformal geometry
which possesses an invariant absolute circle (Poincaré [9]) [8,7]. 1 see Euclidean
geometry as a conformal geometry which possesses an invariant absolute point.
The subgroup of general conformal transformations with a fixed absolute point is

isomorphic to Klein's ‘Hauptgruppe’ [4].

Often complex function theory defines (linear) conformal geometry by the group
of Mobius transformations IM [5,7] and proves the invariance of the cross ratio
with respect to this group. In my eyes conformal geometry is characterised by
the invariance of the magnitudes of angles. This article shows that the invariance
of real cross ratios is sufficient for the invariance of magnitudes of angles. The
invariance of complex cross ratios is sufficient but not necessary for this invariance.
Therefore we define conformal geometry not by IV but by a more general group

K := MU™IM". Elements of "M are conformal reflections.

I am interested in a conformal foundation of elementary Euclidean geometry
because in this way my triangle model of quaternions [10,11] can be seen as a model

situated in a natural 3-dimensional conformal space.

TKnown details of 2-dimensional conformal geometry are collected in H. Schwerdtfegger, Ge-
omeiry of Complez Numbers, New York: Dover, 1979.
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1. Conformal reflection and conformal symmetry

Definition 1.1. InC a conformal basic transformation R* € "IM", reflection
or symmetry is defined by the function

2 2 tapn2Z+ a2 +anztan=>0 (1.1)
with
laka] <0, 0kx = Gk
and
—021 /
z= — 2 =00
a1
Zf ary # 0,'

z=00+ 2 =00

if ay; = 0 (% is the conjugate of z). The same A = ayy defines z — 2’ and 2’ + z,
so we also note z « 2.

It is helpful to see two aspects of this basic transformation: ‘Reflection’ em-
phasises that this transformation is a mapping z — 2’ , with the original z and
the image 2. If I regard this transformation as a ‘symimetry’ I see the set of pairs
(z,7') associated by the equation (1.1).

Definition 1.2. A sequence z — 2’ — 2"+ 2" — .. — z of X reflections,
XA € N, is a conformal transformation R*. If A is an even number I call
this transformation an even conformal transformation. A transformation con-
structed by an odd number X of reflections is an odd conformal transformation.
"M is the set of all transformations R*.

Definition 1.3. An element of K = MU'IM” is a konformtransformation
or conformal transformation K. K s called the set of general conformal
transformations.

Definition 1.4. The set of fired points of a conformal reflection (symmetry) is
called konformkreis or conformal circle (cocircle). This set is also called
axis of reflection or axis of symmetry.

75



RUTHENBERG

With 2" = z and (1.1) one gets the equation of a konformkreis
01122 + @122 + anZ + agy = 0,

also with an hermitian matrix and |4| < 0.

Remarks

(1.2)

1. A hermitian matrix A and every matrix 5.4 with s # 0 describe the same

reflection and the same konformkreis.

2. Because the matrix A describes both the symmetry and its axis we use the

same letter A to name this matrix, its symmetry and its axis.

3. We assume |A| < 0. If for example a;; = ag = 1,a19 = a9, = 0 with |A] >0
we get 2z = —1 as a cocircle equation. But complex numbers with 27 = —1

don’t exist.

2. The invariance of conformal circles and sym-

metries

If 2 # oo, the reflection
Bz =z (12540 403+ 5 =0
can be written
2 2= (b2 4 B,) (617 + b))
If we substitute z of (2.2) into the konformkreis equation (1.2)
Aayzitaz+az+o,=0
we get after some straightforward reckoning the transformed equation

! 17 ! =
A a2 + a2 4 anz +an =0
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with the matrix elements
ay;; = a1b5 - ,Bl(lll_) + (7b) + CYQ,812
a2 = b(a1 8y + af8y) — B1fra — ab? 25)
ag1 = b(ay By + @2f31) — 5,58 — ab® .
Qg9 = Cl/gbl-) - ,32((_11) + (Ji)) + Q]ﬂgz.
Again we get an hermitian matrix Qr) = Gy and it is
2
ay a (,61 b
Al = S . 2.6
la /\[ a az! [b 'le ( )

Because |A| < 0 and |B] < 0 it follows with (2.6) that also |a.| < 0. Equation
(2.4) has the form of a konformkreis equation, too. The reflection B maps cocircle
A into the cocircle A’ Also if we use a sequence of reflections R* the image of A is
a conformal circle. It is known that a conformal circle is invariant under Qvi. We
have thus proved:

Theorem 2.1. Every conformal transformation K € K maps a konforkreis into a

konformkreis.

We also say: A konformkreis is invariant under (with respect to) the general
conformal group. Not only the axis of a symmetry but also this symmetry itself is
invariant. To show this in "I I map the symmetry

Atz 2" a2’ 2+ a2 4 az" +ay = 0 (2.7)

(Compare the equation (2.3) of the cocircle A) by the reflection B of (2.2). Because
the equation (2.7) of the symmetry A and the equation of its symmetry axis (2.3)
has the same form (we have only to substitute “z” by “2*”), the same reckoning
which leads to (2.4), (2.5), (2.6) also leads to

A2 o2V a2 + g + 0012 + asy = 0 (2.8)
together with (2.5) and (2.6).

Theorem 2.2. Every conformal transformation K € K maps a symmetry into a
symmetry.
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Theorem 2.1 and 2.2 say the same thing in different words because hermitian
matrix with negative determinant, konformkreis and symmetry are equivalent con-
cepts. Didactical but also scientific considerations make it desirable to state this
theorem in two equivalent forms.

Hermitian matrices and symmetries (both in a more general form) have impor-
tance in modern physics. Also the usefulness of the konformkreis concept should
be discussed in areas where the classical concepts of Euclidean circles, straight lines
and lengths have lost significance.

How is my idea of conformal transformations "M* connected with the concept
of Mobius transformations M defined for instance in function theoretical books
[5,7]7 This connection is described by

Theorem 2.3. Every conformal transformation R* with even )\ has the ‘Mbius
form’

22 = (az +b)(cz 4 d)™* (2.9)

with complez a,b,c,d.

Also the set of these even conformal transformations constitute a group. This
group of even conformal transformations is a subgroup of the usual Mébius trans-
formations or is identical with this Mébius group. "IM* C IM if A is even.

Proof. Two reflections produce a product described by an equation of the form
(2.9). The product of two transformations (2.9) has again the form (2.9) and this
product is equivalent the product of four reflections. An even conformal transfor-
mation can be described for every even A by an equation of the form (2.9). The
‘M&bius form’ of (2.9) guarantees that also even conformal transformation consti-
tute a group. It is a subgroup of M for its elements have the form of elements of
this group. [

0Odd conformal transformations are not elements of M because odd conformal
transformation change the cross ratio (Theorem 5.2) but this cross ratio is invariant

in M [5,7].
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Which suppositions secure the identity IM = "M> for even A\? (Which even
number A is sufficient to generate every element of M as element of "M” for even
A?) This question is interesting, but an answer is not a theme of this article. In
M (and in "M with even A) not only conformal circles and circle configurations
but also the orientations of a 4-circle are invariant. A transformation with odd A
changes a right orientated 4-circle into a left orientated one (Compare Theorem
5.2). Presumable books of complex analysis and function theory (cf. [5,7]) restrict
to Mobius transformations IM because such transformations are analytic functions.
Odd transformations are non-analytic ones.

Remarks

1. All conformal circles (symmetries) can especially be standardized by |A| =
—1. If we use this special standardization the number -1 is invariantly bound
with every konformkreis and its conformal basic transformation (cf.(2.6)).

2. The word ‘axis’ of symmetry remembers that the set of fixed points of a
conformal basic transformation appears as an Euclidean straight line if we
use the traditional Gauss/Argand plane to illustrate conformal figures and if
the point z = oo is a point of this symmetry axis.

3. The words ‘konformkreis’ and ‘conformal circle’ remember that the set of
fixed points of a conformal basic transformation appears as an Euclidean
circle if we use the traditional Gauss plane to illustrate conformal structures
and if the point z = oc is not a point of this conformal circle.

4. If we use the Riemann sphere of complex analysis [5,7] to illustate conformal
structures, all conformal circles (both through and not through z = o0)
appear as Euclidean circles.

5. Germans use the word ‘kreisgeometrie’ (‘circle geometry’, cf. [1]) to denote
the 2-dimensional geometry of conformal circles. Also in the following we
often use the old Euclidean word ‘circle’ to shorten the word ‘conformal
circle (cocircle)’. But also if we use the same word for Euclidean circles
and for conformal circles we have to pay attention to the difference of both
conceptions. For example in conformal geometry a circle generally does not
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possess a centre; ‘radius’ of a circle has only in Euclidean but not in conformal
geometry an invariant meaning.

- Only if we restrict the general conformal group to the subgroup of such trans-
formations with an invariant point zg (I call this point the absolute point),
the structure of conformal circles, which do not pass through the absolute
point, is identical with the structure of Euclidean circles. For instance in
relation to this invariant z.s and its subgroup (which is isomorphic to the
Euclidean group of similarities) one can define the centre of an Euclidean
circle: The centre z,, of a circle A4 is the picture of g, if we map z4s by the
reflection A.

. If we interpret the traditional Gauss plane as an Euclidean plane the point
z = oo is traditionally the absolute point. But it is interesting to use also
a point z # 00 as absolute point. In this way we get a non-traditional
model of the Euclidean structure. This non-traditional picture of Euclidean
geometry has some (at least didactical) advantages: For example in this
representation Euclidean straight lines can be seen as (conformal) circles
through the absolute point. From the higher conformal view this non-classical
model of Euclidean geometry (with 2,4, # o0) is equivalent to the usual
classical model (with 24, = 00). It is only an historically grown convention
to identify the ‘pathological’, not proper number oo of the complex field with
the ‘pathological’, not proper point z,, of Euclidean geometry.

I see two aspects of geometry :

1. A transformation K, element of the conformal group K, defines the variable

aspect of conformal geometry. The elements K bring about the connection
between different locations of conformal entities.

. Only those parts of conformal entities have an objective (invariant, geomet-
rical) meaning which do not change if we change the location of this entity.
With help of the axes of symmetries we can construct a set of wmvariable circle
entities, a set of conformal basic structures. Every such conformal structure is
dual in points and circles, possessing 2" points and 2" circles (v = 0,1,2,3). In
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the following sections of this article we use 2-circles (v = 1) to define confor-
mal angles. In a second paper we use 4-circles (v =2) to define the conformal
form of trigonometry. I am especially interested in the conformal geome-
try of a 4-circle. This circle configuration, seen as an entity of the natural
3-dimensional conformal space, describes the conformal shape of quaternions.
And such Hamiltonian complex numbers are seen both as coordinate systems
of the 3-dimensional natural space and as elementary geometrical particles
in this physical space.

3. Conformal reflections and conformal circles in
special locations

A conformal transformation always maps a symmetry (and its axis) into a
symmetry (and its axis). Therefore, without loss of generality we can discuss
further features of these objects in choosing a ‘special location’ of such circles and
symmetries. (1.2) and (1.1) describe circles and symmetries in ‘general location’.
A symmetry in special location has a simpler form of its hermitian matrix, for

A= (S é) or ((1) _01> (3.1)

with the conformal circle z = z or 2z = 1. A little arithmetic proves:

instance

Theorem 3.1. Every symmetry — in a more general location - can be transformed
into the special locations (3.1) so that the azes are z = % or 2z = 1.

4. Two circles in symmetric position

Definition 4.1. If a reflection A transforms a set of points F C C into a set F'
in such a way that F =F', the circle A is ¢ symmetry axis of F ; in relation to
A the figure F is in a symmetric position.

If a special location is used it is simple to prove:
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Theorem 4.1. Every conformal circle A possesses infinitely many circles which
are in a symmetric position to A.

If a conformal circle A is the symmetry axis of a circle B, the conformal circle
B is also the symmetric axis of 4, both circles are in a symmetric position to each
other.

5. The cross ratio

A fundamental invariant number of conformal geometry is the cross ratio (cf.
[5,7]) w of four points

Z4—21 [ 22— 2

)= (1234) .= : 5.1
w=(1234) %4 —Z3 22— 23 (5:2)
For our purposes we put together known formulae:
wy = (1234) = w w_y = (1432) = w™?
wy = (1342) = (1 —w)™? woo=(1243) =1 —w (5.2)
ws = (1423) = (w — 1)w™? wog = (1324) = (w— 1)t
wi(l—w;) =1 wog(l—w.)=1
w3(l—wq) =1 woo(l—w_3)=1 (5.3)
wo(l —wy) =1 wy(l—w_g)=1
wiwrwy = —1 W_W_oW_3 = —1 (5.4)

I call the three numbers w, the positive cyclic permutations of a cross ratio; w_y
are the negative ones. These positive and negative cyclic permutations are related
by
We-We=1 £ = 1,2,3 (5.5)

and

wy + W_g = 1

Wo -+ w_g = 1 (56)

wy+w_; =1

A stright forward calculation proves
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Theorem 5.1. If four points z, define the cross ratio w and if the points z;, are
reflected by A,

zi >z,

the cross ratio w' of the image points 2" is the complex conjugate of w:
w' = .

A transformation R* with \ even maps a cross ratio w into the cross ratio
w' = w because w = W for every complex number 1.

Theorem 5.2. Within the group M and within "M» with even ) the cross ratio
of four points is invariant. An odd transformation changes such cross ratio into
the conjugate number .

If four points are points of the same conformal circle A it follows for the cross
ratio of these four points, as fixed points of the reflection A, that

so that
w = w.

Theorem 5.3. Four points of the same konformkreis have a real cross ratio. A

real cross ratio is invariant in the general conformal group. Also reflections do not
change the real cross ratio.

The position of a point z in relation to two points a,b and a third point z; on
a cocircle A can be described with help of the real cross ratio of these four circle
points

b—2z  a-—2z

w =

b—2z a—z

With 2 # a and z # b and because w is real we have either w > 0 or w < 0.
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Definition 5.1. The set of points z on A with w > 0 is the circle arc A;; the set
of points z on A with w < 0 is the circle arc As.

Theorem 5.4. Two points a,b on a conformal circle A produce ezactly two circle
arcs Ay and A,.

For it is either w > 0 or w < 0.

6. The conformal 2-circle

We want to define ‘angles’ without using the angle concept of Euclidean ge-
ometry. Conformal geometry cannot use this elementary Euclidean angle concept
because straight lines and therefore tangents to circles are not defined.

Definition 6.1. Two points together with two cocircles through these points con-
stitute a 2-circle. The points are the corners, the circles the lines of the 2-circle.

The two corners of a 2-circle separate every line into two arcs (Theorem 5.4).

Definition 6.2.

An angle in a 2-circle is a pair of arcs.

A stretched angle is an arc pair on the same line.

Adjacent angles possess a common arc.

An angle pair is a pair of apex angles if the two angles produce two stretched
angles.

Remarks

1. For example : A 2-circle AB with the arcs A, A,, By, B, has the stretched
angles AjA; and ByBy. Adjacent angles are 4,B; and A,B;. A;B, and
Ay B, are a pair of apex angles.

2. The word ‘line’ of a 2-circle remembers that a conformal 2-circle is corre-
sponding to an Euclidean pair of intersecting straight lines. Generally a
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conformal angle possesses 2 arcs and 2 corners (apexes). Only if we illustrate
an angle in a Gauss plane in such a way that one corner is the point z = co an
angle appears in the traditional form, a special ‘Euclidean’ location. Because
in this location z = oc is the absolute point, an Euclidean angle possesses
only one apex, for the second apex is only a ‘pathological’, not a proper point
of the Euclidean plane.

Definition 6.3. If the two lines of a 2-circle are in a symmetric position to each
other these circles are right-angled or orthogonal.

Definition 6.4. Two angles have the same magnitude if they can be conformally
mapped into each other.

7. The characteristic number of a 2-circle

Definition 7.1. If a circle M is right-angled to both lines of a 2-circle AB this
circle M is a measuring circle of AB.

Given a 2-circle AB in general location. One can always find a conformal
transformation so that the corners z; and z, of AB get the special location (21, z9) =
(0,00). Here the lines of the 2-circle are described by the equations

A:az+az=0, B:bz+bz=0 (7.1)

a,be C,a #0b.
In this location

M:zi+a=0 (7.2)

(with real a < 0) are measuring circles of AB , which follows by reflecting A and
B at M. Because every 2-circle can be given the special location (7.1) and because
symmetries are invariant with reflections we have proved

Theorem 7.1. Every 2-circle possesses an infinite number of measuring circles.

A 2-circle AB (7.1) intersects each of its measuring circles at four points

zy3=EV abb—1, 240 = £V ada~l. (7.3)
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These four points have the cross ratio

- 2

_ [ VaaTl — Vbb? (7.4)
vaa~! 4+ Vbb1

a does not appear in this formula. Therefore every measuring circle produces the

same cross ratio. So the real number w is associated with a 2-circle, independently

of the used measuring circle. And because the real w is an invariant cross ratio in

the general conformal group, w does not depend on the 2-circle’s location.

Definition 7.2. The real cross ratio w produced by a measuring circle M on a
2-circle AB is the characteristic number of this 2-circle.

Equation (7.4) does not show that this characteristic number is a real number.
We look for a real parameter ¢ which indicates that w = 1 -
If we choose a special representation of B in (71) by b =14 = /=1 and of M in
(7.2) by a = —1, with 213 = xl and z ;= z4 = —2z, we have

(1-2)? SRy 2 e 42 12\ 2 .
YE=AlTL) T VERRpEsVEN B Ry sy, (7.5)
It is z = exp (i¢) because zZ = 1, so that

(5 explie/2) — exp(~ig/2)\? 7
w= < exp(i¢/2)+eXP(‘i¢/2)> =

With this formula the real characteristic number w of the 2-circle is described by

the real parameter ¢. For the function

, - exp(i¢/2) ~ exp(—ig/2)
O e o) —explia2)

the symbol ¢/2 — tan (¢/2) is usually used, so that
w(¢) = — tan® (¢/2). (7.8)

Because the characteristic number w is a geometrical (invariant) property of the

(7.7)

2-circle, also ¢ has an invariant meaning. We get a bijective correlation between 0]
and w if we restrict to

0< o< (7.9)
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8. The magnitude of an angle

Given a 2-circle AB and one of its measuring circle M. M may meet the four
arcs A, of the 2-circle in the four points z, (k =1,2,3,4). I mark an angle and its
magnitude with the same sign. And for example the angle with the arcs A; and
Ay with the sign ¢q,.

Definition 8.1. The real parameter ¢ according to (7.6) is the magnitude of the
angle ¢14, in symbols ¢14 == ¢.

Because this magnitude of an angle is defined with help of the conformal cross
ratio we can deduce some elementary angle theorems with help of this cross ratio :

L. ¢14 = ¢4y, because (1234) = (4321). Angles are not orientated.

2. ¢14 = ¢33 = o3, because (1234) = (3412) = (2143). Two apex angles have
the same magnitude.

3. The magnitudes of adjacent angles possess the sum 7, because adjacent angles
have inverse cross ratios Wi1, Woq, With ww_; = 1.

4. Orthogonal angles possess the magnitude 7/2, (1234) = (2341), wiy = w_;.
All angles in a right-angled 2-circle possess the same magnitude /2.

We get a special situation if the two corners of a 2-circle are degenerated to a
double point. In this situation this double point is a point of the measuring circle
too. And two of the four measuring points are identical with this double point.
There are essentially two configurations which can be described by w; = 0,¢=0
and by w; = oo, ¢ = 7. If we accept also such degenerated 2-circle we have

0<o <. (8.1)

9. Angle functions as permutations of cross ratio

My interpretation of the real cross ratio as the characteristic number of a 2-
circle gives a geometrical picture of its 24 permutations.
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Section 8 gave the interpretation for the equalities of permutations, for example
(1234) = (4321) = (3412) = (2143) :

An angle and its apex angle have the same magnitude; if we measure an angle and
its apex angle the order of its arcs does not matter.

What is the meaning of the 6 different permutations w.; of (5.2) in section 5?
These 6 different permutations of a cross ratio can be described by the same pa-
rameter ¢ but in different forms :

Tet—e” +2 et —e~ -2

W1 = —<Ze++e—> W-1 = _(Ze“‘+e‘)
+2 -2

+ ie— et L e~

Wiy = +(%e—> Wy = -I—(P < ) (9.1)

-2 +2

_ Tet—e , _ Tet—e”

Weg = +(Z_2_> w-g = +<Z__2—)

(with e* := exp(+i¢/2), e~ := exp(—i¢/2)) so that

wy = —tan¥2(¢/2) wo; = —tan"?(¢/2)
wiy = cost?(¢/2) w_g = cos~3(¢/2) (9.2)
wiy = sin"%(¢/2) woz = sin™*(¢/2).

Therefore the 2 x 3 angle functions

1

@ +—  tangy @ = tan”
@ > cos @ — coslyp (9.3)
w — sin"ly @ +—  sing

{with ¢ := ¢/2) and the 2 x 3 real permutations wx, (5.2) reciprocally interpret
each other. For instance the inverse relation (5.5) of w,; and w_; can be seen as
the inverse relation of the 2 x 3 angle functions. For example (5.6) takes the form

—tan’¢ + cos?yp
cos?¢p + sin?p =1 (9.4)
sin?y —~ tan"?¢ =1

The classical equation cos?p+sin®¢ =1 appears conformally fitted into a cvcle
of 3 equations. Without our cross ratio definition of the six elementary angle
functions the different signs hide this symmetry.

Two formal things are interesting :
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1. The conformal magnitude ¢ of a conformal angle comes together with the
classical magnitude of an Euclidean angle. But everywhere in our formulas

¢/2 (not ¢ ) appears.

2. In each case the cross ratios define the square of an angle function.

Not only the measurement of angles and the definition of angle functions but also
a conformal form of Euclidean trigonometry can be founded on the conformal cross
ratio.

In another paper I interpret all non-real cross ratios as the characteristic num-

bers of conformal triangles. With help of such a triangle tan¢ can be defined
by

tan == v/i (9.5)

with an #maginary cross ratio v, here v is the characteristic number of a conformal
triangle with the angles 7/2, ¢, 7/2 — . Between the real number w = w,; of
(9.2) and the imaginary number v I found the connection

w = v? (9.6)

with ¢ = ¢/2.

This possibility to represent tan ¢/2 with (9.5) as a ratio of two imaginary numbers
causes that tan ¢/2 occurs only in a quadratic form, if one restricts to real cross
ratios only.

10. Concluding Remarks

Often Minkowski’s time transformation ¢ — ¢f was only understood as a formal
trick to get a simpler relativistic formalism. 1 use imaginary units of lengths and
impulses in special relativity [11]. Do these non real units possess a deeper geo-
metrical and physical meaning? In the context of this question it is worthy of note
that already a pure and very elementary geometrical concept - the trigonometrical
function tan ¢ - has to be seen as a ratio of two imaginary numbers, if a complex
number is the characteristic number of a conformal (Euclidean) triangle.
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At first the cross ratio was known as a fundamental invariant of projective ge-
ometry. Formally also the Mobius group IM defines a 1-dimensional projective
geometry (with complex points), so the invariance of the cross ratio in C with
respect to M follows formally in the same way as in real 1-dimensional projective
geometry. But on this way the geometrical meaning and importance of this fun-
damental invariant in 2-dimensional conformal geometry does not come into sight.
I could show a real geometrical meaning of the conformal cross ratio by starting
with my conformal basic transformations "M?*, not with the ususal Mobius trans-
formations IM. So the measurements of angles and the elementary angle functions
could be defined without using Euclidean geometry. I have not found this way of
doing things and these results in the mathematical literature. We owe F. Klein the
invariant theoretical concept of a geometry [4] but I do not know another author
who uses this concept as a methodical principle to develop elementary structures
of Euclidean geometry as elements of conformal geometry. My interpretation of
Euclidean geometry as geometry of a conformal subgroup with an invariant abso-
lute point and my critical discussion of the role of the point oo are necessary steps
on this way. The equivalence of konformkreis and hermitian matrix was used to
construct a real projective model of 2-dimensional conformal geometry (cf. [2]). A
very important element of projective geometry is its dual structure. But in [2] I
have not found a hint in which sense 2-dimensional conformal geometry possesses
a duality; that basic structures of 2-dimensional conformal geometry, 2¥-circles,
are dual in points and circles. Also without success [ searched (in publications as
[2,6,12]) for my equivalence of hermitian matrix and conformal symmetry, as well

as my use of this symmetry to construct the conformal group "IM”.

I risk a comparison to explain a second aspect of my methodical innovation. Still
in historical times human beings perceived our earth as a disk. Today satellites
run round the globe. Since Euclid wrote his books, mathematics perceived 2-
dimensional Euclidean structures as elements situated in a plane. In my eyes a
konformkugel (conformal sphere) is the natural stage of 2-dimensional geometry.
If we have this view the absolute Euclidean point loses its special part. This
part can be rewritten. We can add such a point as an individual but normal one
to classical geometrical structures. The absolute point which has ‘chained every
Euclidean structure at infinity’ can be substituted by individual points if we want
to see Euclidean structures as conformal entities. In using this new view an angle
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possesses not one but two apexes; a triangle possesses not three but four corners.
With this methodical innovation old and well-known Euclidean concepts can be
seen only as conformal ones.

A conformal interpretation of Euclidean structure leads me to my triangle model
of quaternions [10,11]. If we use not the point oc but an individual fourth point of
these quaternions, every non-real quaternion can be seen as a coordinate system of
its konformkugel C;. The quaternionic ¢ describes the position of this konformkugel
in our natural 3-dimensional space. The multiplication of two quaternions Ay, A,
has to be seen as the interaction of two particles, elements of two conformal spheres
with the positions ¢; and i5. Every conformal sphere can be seen as the stage
of a 2-dimensional Euclidean structure, but only ‘individual’, in relation to an
individual point oo. I compare this with the situation of coordinate systems in
special relativity.
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